

High Output Maximum Efficiency Protoype Diode Pumped Laser for Space Applications

Presented by

Dr. D. Barry Coyle: Code 600, NASA/GSFC

With

Dr. Richard Kay: American University Paul Stysley: American University

Dr. Demetrios Poulios: American University

High Output Maximum Efficiency Resonator (HOMER)

- Begun as High Efficiency Laser Transmitter (HELT)
- Used as bread board test bed for solving VCL damage issues
- 41cm cavity length
- Positive Branch Unstable Resonator (PBUR) cavity
- 20mJ @ 100Hz or 17mJ @ 240Hz
- Design focuses on reliability. efficiency, and lifetime

Graded Reflectivity Mirror

- Gaussian profile
- Reff = 33%
- Radius of Curvature = -237cm
- Used to achieve TM₀₀ gausian beam
- Combined with 2.5m HR, gives large beam in relatively small cavity length

Note:

- Unstable resonator does not "act" like a stable cavity in the near field, but performs well in the far field and has greater efficiency.
- Unstable resonator has good mechanical stability, similar to a g1g2 = 0.6 0.7 on a stability diagram.

HOMER Laser Head/Slab

Laser Head

Nd:YAG Slab

SDL Diode

Laser Head:

- Water cooled heat sink
- MoCu step mount
- Slab and pumplens location easily adaptable

Laser Slab:

- 1.1% Doped Nd:YAG
- ~90mm center x 5mm wide x2.65mm thick
- Even bounce (22) less susceptible to pointing error
- 26.5° tip angle for maximum gain overlap

Diodes:

- 7 x 4 bar Spectra Diode Labs (SDL) diode array
- 60W per bar at 70A
- De-rated at ~20% to improve lifetime

HOMER Slab Pumping & Lensing

Pumping Scheme:

- Cylindrical pumplens collimates pump beam in the fast axis
- Location of pumplens key for maximizing inversion density and coating damage consideration

Thermal Lensing:

- (a) Thermal lensing intense due to pump beam (b) Lensing is reduced with combination of 2-layers of thermally conductive tape and step mount
- Beam is rounded with the use of a intra-cavity cylindrical lens

HOMER Lifetest Parameters - Typical Output

Intracavity Beam at HR

Far Field Image

GRM Near Field

Typical Laser Settings:

- Diode Pulse = 88 105us
- F = 242Hz
- Q-Switch Pulse ~ 9-10ns

Typical Output:

- E = 15-10 mJ
- $M_x^2 \sim 1.29 \quad M_y^2 \sim 1.74$ Efficiency as high as 12.5%
- Fluence < 3 J/cm²
- 4.8 billion total shots

HOMER 4.8 x 10⁹ Shot **Lifetime Study Results**

of Accumulated Shots Since 07/03/02

HOMER-ETU

Improvements: Mechanical

Flight like laser bench Flight optics mounts Laser head

- Thermally isolated from bench
- Greatly reduced slab warping
- Pinned and modular components for repeated inspections.
- Elkonite slab heat sink matches Nd:YAG's CTE.
- Modular Aluminum diode pedestal conducts heat to base.

Improvements: New-ish LDA Products

- 7 X 4-bar pump assy
- Back-cooled "G" packages
- 60W/bar peak @ 70A
- New 4-bar stacks are narrower in λ which means:

Good

Not Good

- higher effective $\sigma_{\sf abs}$
- Increased pump efficiency in laser
- Allows for running diodes derated ~30%
- hotter slab pump face/stronger thermal lens
 - narrower temp band

Northrop/Grumman (CEO)

QCW 4-bar stacks, 60W/bar

 $\Delta \lambda = 2.5 \text{ nm}$

818.00

HOMER Hardware

HOMER Hardware: Base Plate

HELT/HOMER Comparison

_		
Parameter	2003 HELT 4.8 x 10 ⁹ shot run	2005 HOMER BOL Performance
Pulse E @ 1064 nm	15 - 11 mJ	16 mJ
Rep Rate	242 Hz	242 Hz
Diode Pulse Width	89 - 95 us	80 us (100 us)
Gain Material	1.1% Nd:YAG	1.1% Nd:YAG
# Zig Zag Bounces	24	22
Slab Dimensions	2.64 x 100 x 5 mm	2.67 x 90 x 5 mm
LDA Supplier	SDL	NG/CEO
Diode Current	59 A	57 A (48 A)
Beam Divergence	0.9 x 1.1 mR	1.0 x 0.9 mR
LDA Current Derating	17 %	26 % (36 %)
LDA Linewidth Δλ	4.5 nm	2.5 nm
Test Setup	Open cavity in lab	Sealed box w/ dry air
Optical Effic.	12.5 - 10.4 %	16.1 % (14.9 %)

Typical HOMER-ETU Output

Far Field Image: $D_x/D_v = 1.1/1.0 \text{ urad}$

HR mirror image: $W_x/W_v = 2.2/1.7 \text{ mm}$

Typical Laser Settings:

- Diode Pulse = 85us-88us
- $I = 50 A (\sim 30\% derated)$
- F = 240 Hz
- Q-Switch Pulse ~ 9-10ns

Typical Output:

- E = 17 mJ
- $M_x^2 \sim 1.48 \ M_y^2 \sim 1.53$ Efficiency as high as 16.5%
- Fluence < 2.5 J/cm²
- 1.8 billion total shots

HOMER Long Term Operation

Future Plans

- HOMER is main laser for ESSP BioMM Biomass Monitoring Mission. Proposal effort underway for August ESSP ARO.
- Make copies for long term testing for quantifying effects of:
 - power cycling
 - thermal sweeps
 - diode derating
 - damage limits
- Working with Mark Stephen of 554 to plan independent testing of diode arrays for the 5 billion shot 2 yr lifetime.
- Various trade studies with needed components: GRM mount design, pressurized vs evacuated enclosure.

